Abstract

The ability to identify precise cancer margins in vivo during a surgical excision is critical to the well-being of the patient. Decreased operative time has been linked to shorter patient recovery time, and there are risks associated with removing either too much or too little tissue from the surgical site. The more rapidly and accurately a surgeon can identify and excise diseased tissue, the better the prognosis for the patient. To this end, we investigate both malignant and healthy oral cavity tissue using the Raman spectroscopy, with a monolithic microsphere-fiber probe. Our results indicate that this probe has decreased the size of the analyzed area by more than an order of magnitude, as compared to a conventional fiber reflection probe. Scanning the probe across the tissues reveals variations in the Raman spectra that enable us to differentiate between malignant and healthy tissues. Consequently, we anticipate that the high spatial resolution afforded by the probe will permit us to identify tumor margins in detail, thereby optimizing tissue removal and improving patient outcomes.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.