Abstract

The authors report on a high performance monolithic photoreceiver fabricated from chemical beam epitaxy (CBE) grown InP/InGaAs heterostructures, incorporating a p-i-n photodetector followed by a transimpedance preamplifier circuit configured from heterojunction bipolar transistors (HBTs). The optoelectronic integrated circuit (OEIC) was fabricated on a semi-insulating Fe-doped InP substrate. Microwave on-wafer measurements of the frequency response of the transistors yielded unity current gain cutoff frequencies of 32 GHz and maximum oscillation frequencies of 28 GHz for collector currents between 2 and 5 mA. The photoreceiver was operated up to 5 Gb/s, at which bit rate a sensitivity of -18.8 dBm was measured at a wavelength of 1.5 mu m. The results demonstrate that the CBE growth technique is suitable for high performance HBT-based OEICs.< <ETX xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">&gt;</ETX>

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.