Abstract

Monolayer two-dimensional (2D) materials are of great interest because of their unique electronic structures, noticeable in-plane confinement effect, and exceptional catalytic properties. Here, we prepared 2D covalent networks of polyoxometalate clusters (CN-POM) featuring monolayer crystalline molecular sheets, formed by the covalent connection between tetragonally arranged POM clusters. The CN-POM shows a superior catalytic efficiency in the oxidation of benzyl alcohol, and the conversion rate is five times higher than that of the POM cluster units. Theoretical calculations show that in-plane electron delocalization of CN-POM contributes to easier electron transfer and increases catalytic efficiency. Moreover, the conductivity of the covalently interconnected molecular sheets was 46 times greater than that of individual POM clusters. The preparation of monolayer covalent network of POM clusters provides a strategy to synthesize advanced cluster-based 2D materials and a precise molecular model to investigate the electronic structure of crystalline covalent networks.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.