Abstract

We prove that the 2-category of skeletally small abelian categories with exact monoidal structures is anti-equivalent to the 2-category of fp-hom-closed definable additive categories satisfying an exactness criterion. For a fixed finitely accessible category C with products and a monoidal structure satisfying the appropriate assumptions, we provide bijections between the fp-hom-closed definable subcategories of C , the Serre tensor-ideals of C fp - mod and the closed subsets of a Ziegler-type topology. For a skeletally small preadditive category A with an additive, symmetric, rigid monoidal structure we show that elementary duality induces a bijection between the fp-hom-closed definable subcategories of Mod - A and the definable tensor-ideals of A - Mod .

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.