Abstract

Anionic phospholipids, principally phosphatidylserine, become exposed on the external surface of viable vascular endothelial cells in tumors, providing an excellent marker for tumor vascular targeting. We recently raised an IgG monoclonal antibody, 3G4, which binds to anionic phospholipids in a beta2-glycoprotein I-dependent manner. It inhibited tumor growth in a variety of rodent tumor models by stimulating antibody-dependent cellular cytotoxicity toward tumor vessels. In the present study, we tested the hypothesis that docetaxel, which is known to have antivascular effects on tumors, might induce exposure of anionic phospholipids on tumor vasculature and, thus, enhance the antitumor activity of 3G4. Treatment of human umbilical vascular endothelial cells with subtoxic concentrations of docetaxel (20 pmol/L) in vitro caused anionic phospholipids to be externalized without inducing apoptosis. Docetaxel treatment of mice increased the percentage of tumor vessels that expose anionic phospholipids from 35% to 60%. No induction of phosphatidylserine was observed on vessels in normal tissues even after systemic treatment with docetaxel. Treatment of mice bearing orthotopic MDA-MB-435 human breast tumors with 3G4 plus docetaxel inhibited tumor growth by 93%. Treatment of mice bearing disseminated MDA-MB-435 tumors with 3G4 plus docetaxel reduced the average number of tumor colonies in the lungs by 93% and half the animals did not develop tumors. In both tumor models, the antitumor effect of the combination was statistically superior (P < 0.01) to that of docetaxel or 3G4 alone. Combination therapy reduced the tumor vessel density and plasma volume in tumors to a greater extent than did the individual drugs. The combination therapy was no more toxic to the mice than was docetaxel alone. These results indicate that, as an adjuvant therapy, 3G4 could enhance the therapeutic efficacy of docetaxel in breast cancer patients.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.