Abstract

Recessive mutations in the MPV17 gene cause mitochondrial DNA depletion syndrome, a fatal infantile genetic liver disease in humans. Loss of function in mice leads to glomerulosclerosis and sensineural deafness accompanied with mitochondrial DNA depletion. Mutations in the yeast homolog Sym1, and in the zebra fish homolog tra cause interesting, but not obviously related phenotypes, although the human gene can complement the yeast Sym1 mutation. The MPV17 protein is a hydrophobic membrane protein of 176 amino acids and unknown function. Initially localised in murine peroxisomes, it was later reported to be a mitochondrial inner membrane protein in humans and in yeast. To resolve this contradiction we tested two new mouse monoclonal antibodies directed against the human MPV17 protein in Western blots and immunohistochemistry on human U2OS cells. One of these monoclonal antibodies showed specific reactivity to a protein of 20 kD absent in MPV17 negative mouse cells. Immunofluorescence studies revealed colocalisation with peroxisomal, endosomal and lysosomal markers, but not with mitochondria. This data reveal a novel connection between a possible peroxisomal/endosomal/lysosomal function and mitochondrial DNA depletion.

Highlights

  • Recessive mutations in the MPV17 gene cause mitochondrial DNA depletion syndrome, a fatal infantile genetic liver disease in humans

  • U2OS and mouse murine embryonic fibroblasts (MEF) cells were cultured under standard conditions

  • Mouse monoclonal antibodies raised against a recombinant Glutathion-S-Transferase (GST)-human MPV17 fusion protein, in which GST was fused to the N-terminus of MPV17 [26], were studied

Read more

Summary

Introduction

Recessive mutations in the MPV17 gene cause mitochondrial DNA depletion syndrome, a fatal infantile genetic liver disease in humans. Localised in murine peroxisomes, it was later reported to be a mitochondrial inner membrane protein in humans and in yeast. To resolve this contradiction we tested two new mouse monoclonal antibodies directed against the human MPV17 protein in Western blots and immunohistochemistry on human U2OS cells. Immunofluorescence studies revealed colocalisation with peroxisomal, endosomal and lysosomal markers, but not with mitochondria. This data reveal a novel connection between a possible peroxisomal/endosomal/lysosomal function and mitochondrial DNA depletion

Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call