Abstract

The RAGE (receptor for advanced glycation end products) is believed to play a role in sepsis by perpetuating inflammation. The interaction of RAGE with a variety of host-derived ligands that accumulate during stress and inflammation further induces the expression of RAGE. It was previously shown that a rat anti-RAGE monoclonal antibody protected mice from lethality in a cecal ligation and puncture model. We studied the effects of a humanized anti-RAGE monoclonal antibody in the murine pneumococcal pneumonia model of sepsis. Moreover, a gene expression analysis was performed in lung tissue of animals that underwent cecal ligation and puncture and treated with the rat anti-RAGE monoclonal antibody, compared with controls. Administration of humanized anti-RAGE mAb 6 h after intratracheal infection with Streptococcus pneumoniae improved mortality in BALB/c mice whether a 7.5 mg/kg (P < 0.01) or a 15 mg/kg dose (P < 0.01) was administered in combination with antibiotics. Gene expression analysis showed that many of the genes modulated by treatment with the anti-RAGE antibody were those that play an important role in regulating inflammation. Anti-RAGE monoclonal antibody offered a survival advantage to septic mice. This protective role in treated animals is supported by the observed gene expression profile changes of genes involved in sepsis and inflammation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.