Abstract

Objectives : To investigate the underlying mechanisms of how the basic fibroblast growth factor monoclonal antibody (bFGFmAb) attenuates cisplatin (DDP) resistance in lung cancer using A549 cells and cisplatin-resistant A549 cells (A549/DDP). Methods : Cancer cell proliferation, cell viability, and 50% inhibitory concentration (IC50) of cisplatin were assessed. Transwell assays were utilized to evaluate the invasion activity of tumor cells in response to treatment. Epithelial-to-mesenchymal transition markers and drug resistance proteins were analysed using Western blots. Results: We demonstrate that the bFGFmAb inhibits the proliferation and invasion of both A549 and A549/DDP cells. The bFGFmAb increases cisplatin sensitivity of both A549 and A549/DDP cells as evidenced by an increase in the IC50 of cisplatin in A549 and A549/DDP cells. Furthermore, bFGFmAb significantly increases the expression of E-cadherin, whilst decreasing the expression of N-cadherin and bFGF in both cell lines, thereby showing inhibition of epithelial-to-mesenchymal transition. In addition, we demonstrate that bFGFmAb significantly reduces the expression of the lung resistance protein. Conclusions: Our data suggests that the humanized bFGFmAb is a promising agent to attenuate cisplatin resistance in NSCLC. The underlying mechanism for this effect of bFGFmAb may be associated with the inhibition of epithelial-to-mesenchymal transition and reduced expression of lung resistance protein.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call