Abstract

We consider finite hypergraphs with hyperedges defined as sets of vertices of unbounded cardinality. Each such hypergraph has a unique modular decomposition, which is a tree, the nodes of which correspond to certain subhypergraphs (induced by certain sets of vertices called strong modules) of the considered hypergraph. One can define this decomposition by monadic second-order (MS) logical formulas. Such a hypergraph is convex if the vertices are linearly ordered in such a way that the hyperedges form intervals. Our main result says that the unique linear order witnessing the convexity of a prime hypergraph (i.e., of one, the modular decomposition of which is trivial) can be defined in MS logic. As a consequence, we obtain that if a set of bipartite graphs that correspond (in the usual way) to convex hypergraphs has a decidable monadic second-order theory (which means that one can decide whether a given MS formula is satisfied in some graph of the set) then it has bounded clique-width. This yields a new case of validity of a conjecture which is still open.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call