Abstract

We study a class of polynomial optimization problems with a robust polynomial matrix inequality (PMI) constraint where the uncertainty set itself is also defined by a PMI. These can be viewed as matrix generalizations of semi-infinite polynomial programs because they involve actually infinitely many PMI constraints in general. Under certain sum-of-squares (SOS)-convexity assumptions, we construct a hierarchy of increasingly tight moment-SOS relaxations for solving such problems. Most of the nice features of the moment-SOS hierarchy for the usual polynomial optimization are extended to this more complicated setting. In particular, asymptotic convergence of the hierarchy is guaranteed, and finite convergence can be certified if some flat extension condition holds true. To extract global minimizers, we provide a linear algebra procedure for recovering a finitely atomic matrix-valued measure from truncated matrix-valued moments. As an application, we are able to solve the problem of minimizing the smallest eigenvalue of a polynomial matrix subject to a PMI constraint. If SOS convexity is replaced by convexity, we can still approximate the optimal value as closely as desired by solving a sequence of semidefinite programs and certify global optimality in case that certain flat extension conditions hold true. Finally, an extension to the nonconvexity setting is provided under a rank 1 condition. To obtain the above-mentioned results, techniques from real algebraic geometry, matrix-valued measure theory, and convex optimization are employed. Funding: This work was supported by the National Key Research and Development Program of China [Grant 2023YFA1009401] and the National Natural Science Foundation of China [Grants 11571350 and 12201618].

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.