Abstract

A new moment method for the modelling of polydisperse sprays is proposed that simultaneously takes into account the dispersion in droplet size and droplet velocity. For the derivation of this Eulerian method the kinetic spray equation is used which constitutes a partial differential equation for the probability density function of droplets. To reduce the complex kinetic spray equation to a form that can be managed with the available numerical procedures, moment transforms with respect to the droplet velocity and the droplet size are conducted. The resulting moment equations are closed by choosing an approximate probability density function which applies to polydisperse sprays. The method is successfully tested for configurations in which a polydisperse spray is either splashed, evaporated or effected by a Stokes drag force. The tests are organised in such a way that crossing of two spray distributions is always included. The new method is able to capture the polydisperse nature of sprays as well as the bi-(or multi-) modal character of the droplet velocity distribution function, for example, when droplets cross each other.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.