Abstract
This paper addresses the fundamental topic of time dependence for time series when data points are given as functions. We construct a notion of time dependence through the projections on the basis system extracted from the principal components of normalized sums. This allows us to adapt various scalar time series techniques to the functional data context. In particular, we define dependence based on the autocovariances and cumulants of the projections, covering short and long memory scenarios. This notion naturally applies to linear processes. We illustrate the applicability of this moment based approach through several statistical problems in functional time series: (i) investigating the consistency of the estimator of the functional principal components under short and long memory, (ii) estimating the long-run covariance function and (iii) testing for short memory against the long memory alternative.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.