Abstract

We use mollification to regularize the problem of deconvolution of random variables. This regularization method offers a unifying and generalizing framework in order to compare the benefits of various filter-type techniques like deconvolution kernels, Tikhonov, or spectral cutoff methods. In particular, the mollifier approach allows to relax some restrictive assumptions required for the deconvolution kernels, and has better stabilizing properties compared with spectral cutoff or Tikhonov. We show that this approach achieves optimal rates of convergence for both finitely and infinitely smoothing convolution operators under Besov and Sobolev smoothness assumptions on the unknown probability density. The qualification can be arbitrarily high depending on the choice of the mollifier function. We propose an adaptive choice of the regularization parameter using the Lepskiĭ method, and we provide simulations to compare the finite sample properties of our estimator with respect to the well-known regularization methods.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.