Abstract

A majority of the population is affected by diabetes worldwide. The delay in detection leads to serious conditions such as cardiovascular disease, neuropathy, and others. To avoid severe consequences, it needs to be detected at the early stages. Various methods and techniques have already been introduced commercially to detect diabetes. But still, there are various limitations to these traditional methods (ion-exchange chromatography, high-performance liquid chromatography (HPLC), thiobarbituric acid (TBA) assay, boronate affinity chromatography) such as they require more time for operation; also, they are expensive and need expertise for operation. These limitations can be overcome with the application of biosensors integrated with nanomaterials and imprinting techniques. This presented study describes the development of an electrochemical biosensing platform for determining the concentration of glycated albumin. The biosensor was developed using the molecularly imprinting technique to enhance the specificity, stability, and selectivity. Further, to enhance the electrode's conductivity, surface area, and biocompatibility, the sensing platform was modified with Molybdenum disulfide (MoS2) nanosheets and Platinum nanoparticles (Pt NPs). Furthermore, the presented electrode was evaluated with electrochemical measurements. The biosensor exhibits a detection limit as low as 0.34 nM. Also, it operates in a dynamic concentration range from 0.34 nM to 700 μM. The actual working range was divided into lower (0.34 nM to 35 μM) and higher (200 to 700 μM).

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call