Abstract
ZnO quantum dots and CuFe2O4 nanoparticles were synthesized by chemical precipitation. The ZCF composite was created by the solvothermal method. A new molecularly imprinted fluorescence sensor (ZCF@MB-MIP) with unique optical properties and specific MB recognition was successfully generated. ZCF@MB-MIPs were characterized by Fourier-transform infrared spectroscopy, transmission electron microscopy, and X-ray diffraction and were applied for the selective detection of methylene blue (MB). The optimal working time of ZCF@MB-MIPs was 15 min, and the optimal working concentration was 37 mg·L–1. The fluorescence intensity was linearly quenched within the 0–100 μmol·L–1 MB range, and the detection limit was 1.27 μmol·L–1. The imprinting factor of the sensor (IF, KMB-MIPs/N-MIPs) was 5.30. At the same time, a real-time monitoring system was established for the photodegradation process of MB, which had the effect of reflecting the degradation degree of MB at any given time. Hence, ZCF@MB-MIPs are a promising candidate for use in MB monitoring, and they also provides a new strategy for constructing a multifunctional fluorescence sensor with a high selectivity and photolysis function.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.