Abstract

In a recent study Sheng et al. (1995, A.I.Ch.E. J. 41 (10) 2306–2313) presented activity coefficients calculated by molecular simulation (MS) for athermal model polymer-solvent systems. Both activity coefficients of the monomeric solvent in the polymer ( γ 1 ∞) and of the polymer in the solvent ( γ 2 ∞) were calculated at infinite dilution conditions. The MS data cover a broad range of system asymmetry with respect to size in the area of oligomer-solvent mixtures (up to segment ratio 60 1 which corresponds to e.g. a system of n-heptane with nC 460). The MS results were compared with classical and recently proposed free-volume (FV) activity coefficient models in order to conclude on the suitability of the models for phase equilibrium calculations for asymmetric systems. On the basis of the work by Sheng et al., extrapolation methods for estimating the activity coefficient of a solvent and that of a polymer in real solvent-polymer systems are developed here. The so-obtained MS-based activity coefficients are compared with experimental data (in the case of solvent activities) and with the predictions of various activity coefficients models (in the case of polymer activities).

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.