Abstract

An assessment of the ability of a micellar surface to bind different metal ions using molecular simulation is presented in this study. Sodium dodecyl sulfate (SDS) is considered as the anionic surfactant. Various relevant characteristics of SDS-metal ion systems are estimated to quantify preferential binding of metal ions. These are electrostatic energy, total potential energy of the system, radial distribution function, and entropy and free energy change of the system. By examining these parameters, the relative extents of binding of different metal ions to the micellar surface are assessed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.