Abstract

A [2]rotaxane-based molecular shuttle comprised a macrocycle mechanically interlocked to a chemical "dumbbell" has been prepared in high yields by a thermodynamically controlled, template-induced clipping procedure. This molecular shuttle has two different recognition sites, namely, -NH2 +- and amide, separated by a phenyl unit. The macrocycle exhibits high selectivity for the -NH2+- recognition sites in the protonated form through noncovalent interactions, which include 1) N+-H...O hydrogen bonds; 2) C-H...O interactions between the CH2NH2+CH2 protons on the thread and the oligo(ethylene glycol) unit in the macrocycle; 3) pi...pi stacking interaction between macrocycle and aromatic unit. Upon deprotonation of the [2]rotaxane the macrocycle glides to the amide recognition site due to the hydrogen bonds between the -CONH- group and the oligo(ethylene glycol) unit in the macrocycle. The deprotonation process requires about 10 equivalents of base (iPr2NEt) in polar acetone, while the amount of base is only 1.2 equivalents in apolar tetrachloroethane. Upon addition of Li+, the conformation of the [2]rotaxane was altered as a result of the collective interactions of 1) hydrogen bonds between pyridine nitrogen and amide hydrogen atoms; 2) coordination between the oligo(ethylene glycol) unit, amide oxygen atom and Li+ cation. Then, when Zn2+ ions are added, the macrocycle returns to the deprotonated -NH- recognition site owing to coordination of the macrocycle and -NH- from the axle with the Zn2+ ion. All the above-mentioned movement processes are reversible through the alternate addition of TFA/iPr2NEt, Li/[12]-crown-4 and Zn2+/ethylenediaminetetraacetate (EDTA), by virtue of hydrogen bonding and metal-ion complexation. Significantly, the three independent movement processes are all accompanied by fluorescent responses: 1) complete repression in the protonated form; 2) low-level expression in the deprotonated form; 3) medium-level expression following addition of Li+; 4) high-level expression on complexation with Zn2+.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.