Abstract
This work describes a fluorescent probe for following changes in the viscosity of the surrounding medium. The optical properties, fluorescence characteristics, and sensitivity to frictional forces with the surrounding medium are superior to the most commonly used molecular probe, namely dicyanovinyl julolidine. The photophysical properties of the target molecule have been recorded in a range of solvents under ambient conditions, over a wide temperature range, and as a function of applied pressure. The mechanism by which the probe responds to changes in local viscosity involves gyration of the meso-phenylene ring and accompanying distortion of the dipyrrin framework, as indicated by molecular dynamics simulations. Indeed, temperature-dependence measurements have established that the activation energy is small when the solvent viscosity is relatively low, but there is a turnover to strong activation control at very high viscosity. A small but definite solvent dependence appears when the viscosity is varied ...
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.