Abstract

Abstract Hydrogen bond type interactions X–H···Y– (X: C, N, O; Y: Cl) for systems that contain 1,3-imidazole (IM), 1,3-pyrimidine (PYM), N-methylacetamide (MAA), methylammonium (MA), methylamine (MAB), 1-hydroxy-4-methylbenzene (HMB), N-methylguanidinium (MGU), methanol (MeOH), have been investigated via the methods of density functional theory (DFT) at the B3LYP functional level and ab initio MP2, by using mostly the standard 6-31G** and 6-31+G** basis sets. The study helps in understanding structural aspects of at least Re/Ru-imidazole, Ru-pyrimidine and Ru-arene complexes and allows to evaluate the adduct formation energy (electronic), for species of the type M(IM)N–H···Cl–, M(IM/PYM)C–H···Cl–, whose upper limits are ca. –24 and –10 kcal at gas phase. Computed structural and energy parameters help also in evaluating the mechanism of extrusion of Cl– anions in certain ClC Chloride channels from membrane proteins. The hydrogen bond formation energy for selected aminoacid residues with Cl– ranges ca. –106 to –15 kcal mol–1. Owing to the predominance of CONH peptide bonds in every protein system, the formation of the C(=O)–N–H···Cl– hydrogen bond (ΔEel ≈ –21 kcal) is often revealed in X-ray structures of protein···chloride adducts. To cite this article: S. Defazio et al., C. R. Chimie 8 (2005).

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.