Abstract

In this paper, by capturing the atomic informa- tion and reflecting the behaviour governed by the nonlin- ear potential function, an analytical molecular mechanics approach is proposed. A constitutive relation for single- walled carbon nanotubes (SWCNT's) is established to describe the nonlinear stress-strain curve of SWCNT's and to predict both the elastic properties and breaking strain of SWCNT's during tensile deformation. An analysis based on the virtual internal bond (VIB) model proposed by P. Zhang et al. is also presented for comparison. The results indicate that the proposed molecular mechanics approach is indeed an acceptable analytical method for analyzing the mechanical behavior of SWCNT's. of CNT's. The Young's modulus of CNT's was found to be about 1 TPa (2-5). Many theories of mechanics have also been proposed to study the mechanical properties of CNT's. Zhang et al. (6) developed a continuum mechanics approach to model elastic properties of single-walled carbon nanotubes (SWCNT's), and the Young's modulus of SWCNT's was pre- dicted to be 0.705 TPa. Li and Chou (7) presented a structural mechanics approach to model the deformation of CNT's, and calculated the Young's moduli for CNT's with different radii. A similar approach was presented by Chang and Gao (8), and the chirality- and size-dependent elastic properties such as Young's modulus, Poisson's ratio and shear modulus were predicted (9,10). Moreover, the nonlinear effect of SWCNT's was taken into account (11) recently. In view of the unrealistic demand of computational power to study materials of practical size, atomistic simulations are deemed unsuitable for the study of large scaled nanometer materials in large time spans. Therefore, various attempts have been made by researchers to introduce atomic character- istics into the mechanical theory. For example, the molecular mechanics originally developed by chemical scientists (12) can be considered one of the successful attempts. According to the definition of Burkert and Allinger (12), the total potential energy, U , is constitutive of several individual energy terms corresponding to bond stretching, angle bend- ing, torsion, and van der Waals interactions, respectively: U = � Ustretch + � Ubend

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call