Abstract
Although malaria and Epstein–Barr (EBV) infection are recognized cofactors in the genesis of endemic Burkitt lymphoma (BL), their relative contribution is not understood. BL, the most common paediatric cancer in equatorial Africa, is a high-grade B cell lymphoma characterized by c-myc translocation. EBV is a ubiquitous B lymphotropic virus that persists in a latent state after primary infection, and in Africa, most children have sero-converted by 3 y of age. Malaria infection profoundly affects the B cell compartment, inducing polyclonal activation and hyper-gammaglobulinemia. We recently identified the cystein-rich inter-domain region 1α (CIDR1α) of the Plasmodium falciparum membrane protein 1 as a polyclonal B cell activator that preferentially activates the memory compartment, where EBV is known to persist. Here, we have addressed the mechanisms of interaction between CIDR1α and EBV in the context of B cells. We show that CIDR1α binds to the EBV-positive B cell line Akata and increases the number of cells switching to the viral lytic cycle as measured by green fluorescent protein (GFP) expression driven by a lytic promoter. The virus production in CIDR1α-exposed cultures was directly proportional to the number of GFP-positive Akata cells (lytic EBV) and to the increased expression of the EBV lytic promoter BZLF1. Furthermore, CIDR1α stimulated the production of EBV in peripheral blood mononuclear cells derived from healthy donors and children with BL. Our results suggest that P. falciparum antigens such as CIDR1α can directly induce EBV reactivation during malaria infection that may increase the risk of BL development for children living in malaria-endemic areas. To our knowledge, this is the first report to show that a microbial protein can drive a latently infected B cell into EBV replication.
Highlights
Epstein–Barr virus (EBV) is a human c-herpes virus that establishes a persistent infection in .90% of the world’s population
Children living in malaria-endemic areas exhibit an elevated viral load, and acute malaria infection increases the levels of circulating EBV
Cysteinrich inter-domain region 1a (CIDR1a) is a domain of a large protein expressed at the surface of P. falciparum–infected red blood cells
Summary
Epstein–Barr virus (EBV) is a human c-herpes virus that establishes a persistent infection in .90% of the world’s population. EBV has two alternative lifestyles: latent (non-productive) infection, and lytic (productive) replication. EBV persists within memory B lymphocytes in a latent state for the life of the host. A low level of reactivation into lytic replication allows viral shedding into the saliva and transmission of the virus in vivo [1]. The lifelong persistent infection established by EBV is harmless in almost every host and rarely causes disease, unless the host–virus equilibrium is upset. Viral persistence represents a balance between viral latency, viral replication, and host immune responses
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.