Abstract

Nonconventional noncovalent interactions such as CH/O, CH/π, and halogen bonds play important roles in molecular recognition in biological systems and have been increasingly exploited in structure-based drug design. In silico approaches that consider these interactions would be an effective strategy for drug discovery. The computation of the molecular interaction field (MIF), which is a three-dimensional (3D) potential map describing the interactions formed around a target compound, would assist the design of molecules that bind to the target biomolecule via nonconventional interactions. In this study, we developed a novel MIF calculation method that describes nonconventional interactions. This method evaluates the MIF as the interaction energy between the target ligand molecule and probe molecule. To describe the nonconventional interactions, our method employs quantum chemical calculations with four types of probe molecules. The calculated MIFs for casein kinase 2 (CK2) inhibitors correctly identify the halogen bond, CH/π, and CH/O interactions formed in the CK2/inhibitor complexes. Additionally, we have developed a method for calculating the protein–ligand interaction energy (Eint) based on the MIF and a coarse-grained protein model. The calculated interaction energies for CK2 inhibitors correlate with the experimental log(Ki) values. Thus, MIF and Eint obtained by our method show promise as descriptors for protein-ligand interaction prediction by considering nonconventional noncovalent interactions.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.