Abstract

A flow-through optosensing system for oxazepam recognition with fluorescence detection was performed by means of a molecular imprinted polymer based on its acid hydrolysis product, 2-amino-5-chlorobenzophenone. The synthesis was conducted via a noncovalent imprinting methodology, using methacrylic acid as a functional monomer and ethylene glycol dimethacrylate as a cross-linking agent. Hydrolysis (types and concentration of acids), polymer retention capacity, binding properties, and elution (selectivity and reversibility) conditions were optimized. The selected molecular imprinted polymer had a molar ratio composition of 1 : 6 : 45 (template : functional monomer : cross-linker). The proposed method was applied to the determination of oxazepam in a pharmaceutical formulation. External standard calibration, standard additions calibration, and Youden's calibration were carried out in order to evaluate constant and proportional errors due to the matrix. The developed metabolite-based recognition system for benzodiazepines is an innovative procedure that could be followed in routine and quality control assays.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.