Abstract

Abstract Molecular dynamics simulations are performed to investigate the mechanical behavior of nanotwinned NiCo-based alloys containing coherent L12 nano-precipitates at different temperatures, as well as the interactions between the dislocations and nano-precipitates within the nanotwins. The simulation results demonstrate that both the yield stress and flow stress in the nanotwinned NiCo-based alloys with nano-precipitates decrease as the temperature rises, because the higher temperatures lead to the generation of more defects during yielding and lower dislocation density during plastic deformation. Moreover, the coherent L12 phase exhibits excellent thermal stability, which enables the hinderance of dislocation motion at elevated temperatures via the wrapping and cutting mechanisms of dislocations. The synergistic effect of nanotwins and nano-precipitates results in more significant strengthening behavior in the nanotwinned NiCo-based alloys under high temperatures. In addition, the high-temperature mechanical behavior of nanotwinned NiCo-based alloys with nano-precipitates is sensitive to the size and volume fraction of the microstructures. These findings could be helpful for the design of nanotwins and nano-precipitates to improve the high-temperature mechanical properties of NiCo-based alloys.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.