Abstract
Classical all-atom molecular dynamics simulations were used to build and study a polymer network model of EPON-828 as an epoxy and diethylenetriamine as a cross-linker. A cut-off based cross-linking algorithm was adopted to make the cross-linking bonds of the epoxy network. A step-wise cross-linking process was implemented to achieve an epoxy polymer network with a maximum conversion of 0.8. Based on the uniaxial stress–strain response the elastic, bulk and strain moduli were determined and found to match with previous experimental and simulation studies. Water transport inside epoxy networks was analyzed by preparing the epoxy polymer network models containing different amounts of water. The water–epoxy hydrogen bonding interactions strongly influence the diffusion of water molecules in the polymer. Radial distribution functions, volume swelling analysis and mean squared displacements indicated two different types of water molecules in the polymer matrix. Water-matrix hydrogen bonding dominates during the initial sorption process and then the water–water interactions gradually increase their influence on the diffusion process by forming bigger water clusters.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.