Abstract

Full atomistic molecular dynamics simulations are performed on tetra-sulfides and undoped conjugated polymers pernigraniline base polyaniline (PNB), leucoemeraldine base polyaniline (LEB), poly (3,4-ethylenedioxythiophene) (PEDOT) and polypyrrole (PPY) to investigate the binding effectiveness between polysulfides and polymer binders. The weight ratio between sulfur and binder in lithium–sulfur cells is considered in 1:1 v/v mixture of dioxolane/dimethoxyethane. The simulations reveal that the end group 2 of PNB can effectively bind a lithium tetra-sulfide (i.e. Li2S4) cluster or 2 out of 43 Li2S4 molecules with the effect of solvent. However, repeat units of PNB, LEB, PEDOT and PPY seem ineffective in binding solvated Li2S4 through non-bonded interaction, especially when the concentration of tetra-sulfide/binder in a local domain of the cathode is low. Therefore, polymers with this specific functional group (i.e. the end group 2 of PNB) are suggested to be further studied as potential effective binders to inhibit the shuttle effect of solvated lithium polysulfides. Also, since the solvent has considerable impact on the binding effectiveness between tetra-sulfides and binder, it is suggested to take advantage of the explicit solvation models, such as those built in this work, to predict how other influencing factors affect binding between polysulfides and polymers.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.