Abstract

The dynamic coherent structure factor Scoh(q,t) for a 1,4-polybutadiene (PBD) melt has been investigated using atomistic molecular dynamics simulations. The relaxation of Scoh(q,t) at q = 1.44 angstroms(-1) and q = 2.72 angstroms(-1), corresponding to the first and second peaks in the static structure factor for PBD, was studied in detail over a wide range of temperature. It was found that time-temperature superposition holds for the alpha-relaxation for both q values over a wide temperature range and that the alpha-relaxation can be well described by a stretched (Kohlrauch-William-Watts) exponential with temperature independent but q dependent amplitude and stretching exponent. The alpha-relaxation times for both q values were found to exhibit the same non-Arrhenius temperature dependence, indicating that the same physical processes are responsible for relaxation on both length scales. The alpha-relaxation time was found to depend strongly upon the dynamical range of data utilized in determining the relaxation time, accounting for qualitative discrepancies between alpha-relaxation times reported here and those extracted for PBD from experimentally measured Scoh(q,t).

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call