Abstract
The impact of positively charged Arn+ ions, n=1,4,8, incident normally on the (100) surface of NaCl is studied by Molecular Dynamics (MD) simulations for energies up to 1keV. The model assumes fixed charges on the ions and the effect of projectile charge is investigated as a function of energy. It is shown that there is a significant enhancement in the sputtering yield at low impact energies due to the attachment of Cl ions to the impacting Ar, which is subsequently ejected from the lattice. The low energy Ar ions can also experience acceleration towards the NaCl crystal due to Coulombic attraction. At energies greater than a few hundred eV the Ar ions implant within the crystal which accommodates the extra charge from these ions. As a result the sputtering yield from the initial impact is reduced but as the dose increases, the yield rises as Na+ ions are preferentially ejected from the lattice. A large proportion of the ejected material is in the form of clusters.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.