Abstract

Trapping and laser cooling in atomic physics enables control of single particles and their dynamics at the quantum level in a background-free environment. Ultrashort intense laser pulses reveal the ultimate control of electromagnetic fields, enabling the imaging of matter, in principle down to a single molecule or virus resolved on atomic scales. However, current methods fall short in overlapping each target with a pulse of comparable size. We combine the two fields by demonstrating a deterministic molecular conveyor, formed of electric trapping potentials. We deliver individual diatomic ions at millikelvin temperatures and with submicrometre positioning into few-femtosecond ultraviolet laser pulses. We initiate and probe the molecule’s femtosecond dynamics and detect it and its response with 100% efficiency. This experiment might become key for investigations of individual molecules, such as structural determinations using few-femtosecond X-ray lasers. Our scheme may overlap each single molecule with a pulse, focused to (sub)micrometre size, providing the required number of photons at the repetition rate of the laser. Individual molecules are now deterministically trapped in few-femtosecond laser pulses. This molecular conveyer belt may become a useful tool for probing ultrafast molecular dynamics.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call