Abstract

Our group demonstrated that arginase inhibition reduces endothelial dysfunction in spontaneously hypertensive rats [C. Demougeot, A. Prigent-Tessier, C. Marie, A. Berthelot, J. Hypertens. 23 (2005) 971; C. Demougeot, A. Prigent-Tessier, T. Bagnost, C. Andre, Y. Guillaume, M. Bouhaddi, C. Marie, A. Berthelot, Life Sci. 80 (2007) 1128] which opens perspectives in the development of drugs against hypertension. In previous papers [T. Bagnost, Y.C. Guillaume, M. Thomassin, J.F. Robert, A. Berthelot, A. Xicluna, C. Andre, J. Chromatogr. B: Analyt. Technol. Biomed. Life Sci. 856 (2007) 113; T. Bagnost, Y.C. Guillaume, M. Thomassin, A. Berthelot, C. Demougeot, C. Andre, J. Chromatogr. B: Analyt. Technol. Biomed. Life Sci. 873 (2008) 37], we developed a biochromatographic column for studying the binding of an arginase inhibitor with this enzyme and the effect of magnesium on this binding. In this paper, the interaction of arginase inhibitors with an immobilized artificial membrane (IAM) has been studied using a biochromatographic approach. This IAM provided a biophysical model system to study the inhibitor passive transport across cells. It was demonstrated that more the inhibitor cross the cell membrane by passive diffusion more it is potent. As well, an analysis of the thermodynamics of the interaction of the arginase inhibitors with the IAM showed that van der Waals, hydrogen and ionic bonds were the main forces between the arginase inhibitors and the polar head groups of the IAM surface.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call