Abstract

The kinetics of CO chemisorption on both the (1×5) and (1×1) surfaces of Ir{100}, including the CO-induced surface restructuring process, have been studied by measuring the sticking probability as a function of the surface temperature and beam flux. Due to competition between desorption from the (1×5) phase and growth of (1×1) islands, the sticking probability on the initial (1×5) surface is strongly flux-dependent at surface temperatures Ts in the range 480⩽Ts⩽510 K. It is shown that this is due to a strongly nonlinear dependence of the (1×1) growth rate on the local CO coverage on the (1×5) substrate, with an apparent reaction order of around 5. Desorption energies and pre-exponentials of desorption for CO from both the (1×1) and (1×5) surfaces have been determined by means of a modified lifetime measurement technique. Equilibrium coverages as well as isothermal desorption rates of CO were determined for both surface phases. The zero coverage desorption energy of CO from the (1×1) substrate is 196±5 kJ/mol and from the (1×5) surface it is around 150 kJ/mol. This difference in adsorption energies is the driving force for the CO-induced (1×5) to (1×1) phase transition. TEAS data show that the local CO coverage on the growing (1×1) islands during the phase transformation is 0.5 ML.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call