Abstract
The photocatalytic cycloaddition reaction between CO2 and epoxide is one of the most promising green routes for CO2 utilization, for which high performance photocatalysts are intensely desired. Herein, we have constructed an S-scheme heterojunction of MIL-125@ZIF-67 modified by amino groups, which achieves a cyclic carbonate yield of as high as 99 % without employing any co-catalyst, outperforming the previously reported photocatalysts. In-situ diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS) and in-situ electron paramagnetic resonance (EPR) spectroscopy reveal the important role of photogenerated electron migration from Lewis acid (Co) sites to the O atom of epoxide in triggering its ring-opening (the rate-determining step of CO2 cycloaddition reaction) under the assistance of photogenerated hole. Synergistically and concurrently, the Lewis base (amino groups) sites activate CO2 to CO2*, facilitating the following CO2 cycloaddition. Such a synergistic effect provides a most favorable approach to design efficient heterogeneous photocatalysts with dual/multiple-active sites for CO2 cycloaddition reaction.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Similar Papers
More From: ChemSusChem
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.