Abstract
This work concerns a generalization of Clifford theory to blocks of group-graded algebras. A module-theoretic approach is taken to prove a one-to-one correspondence between the blocks of a fully group-graded algebra covering a given block of its identity component, and conjugacy classes of blocks of a twisted group algebra. In particular, this applies to blocks of a finite group covering blocks of a normal subgroup.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.