Abstract
Underwater acoustic channels, influenced by time-varying, space-varying, frequency-varying, and multipath effects, pose significant interference challenges to underwater acoustic communication (UWAC) signals, especially in non-cooperative scenarios. The task of modulating and identifying distorted signals faces huge challenges. Although traditional modulation recognition methods can be useful in the radio field, they often prove inadequate in underwater environments. This paper introduces a modulation recognition system for recognizing UWAC signals based on higher-order cumulants and deep learning. The system achieves blind recognition of received UWAC signals even under non-cooperative conditions. Higher-order cumulants are employed due to their excellent noise resistance, enabling the differentiation of OFDM signals from PSK and FSK signals. Additionally, the high-order spectra differences among signals are utilized for the intra-class recognition of PSK and FSK signals. Both simulation and lake test results substantiate the effectiveness of the proposed method.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.