Abstract

The static loading-induced stress oscillation (SO) in syndiotactic polypropylene (sPP) was studied by modulated differential scanning calorimetry (TMDSC). Samples were taken from the initial necked, premature and mature SO oscillation ranges, respectively, and the related calorimetric responses were compared to those of the bulk material. It was established that necking caused some decrease in the crystallinity. In addition, necking resulted in cold crystallization that was assigned to a polymorphic transition (from all-trans to helical conformation) based on literature results. The TMDSC response was practically the same for necked samples with and without SO. A model was proposed to explain SO. The model assumes the presence of a network (similar to that of semicrystalline thermoplastic elastomers), which is highly stretchable and fails by sudden voiding at the intersections of shear micro bands intermittently.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.