Abstract

Accurate single-cell capture is a crucial step for single cell biological and chemical analysis. Conventional single-cell capturing often confront operational complexity, limited efficiency, cell damage, large scale but low accuracy, incompetence in the acquirement of nano-upgraded single-cell liquid. Flow cytometry has been widely used in large-scale single-cell detection, while precise single-cell isolation relies on both a precision operating platform and a microscope, which is not only extremely inefficient, but also not conducive to couple with modern analytical instruments. Herein, we develop a modular single-cell pipette (mSCP) microfluidic chip with high efficiency and strong applicability for accurate direct capture of single viable cell from cell suspensions into nanoliter droplets (30−1000 nL). The mSCP is used as a sampling platform for the detection of CdTe quantum dots in single cells with electrothermal atomic absorption spectrometry (ETAAS) for the first time. It also ensures precise single-cell sampling and detection by inductively coupled plasma mass spectrometry (ICP-MS).

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call