Abstract

Mechanical ventilation is a life-saving intervention, which, despite being routinely used in ICUs, poses the risk of causing further damage to the lung tissue if the ventilator is set inappropriately. Medical decision support systems may help in optimizing ventilator settings according to therapy goals given by the clinician. Before using the decision support algorithms in commercially available systems, extensive tests are necessary to ensure patient safety and correct decision making. Model-based patient simulators can assist in evaluating such decision support systems by creating different clinical scenarios. We propose a new Java based patient simulator that implements various models of respiratory mechanics, gas exchange and cardiovascular dynamics to form a complex patient model. The implemented models interact with one another to allow simulation of the ventilators influence on various physiological processes. Model simulations are running in real-time and simulation results can be extracted via multiple interfaces. Each of the implemented models has been validated to exhibit physiologically correct behavior. Results of the combined model system also showed to be physiologically plausible.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.