Abstract

In this paper, a modular modeling approach of multibody systems adapted to interactive simulation is presented. This work is based on the study of the stability of two differential algebraic equation solvers. The first one is based on the acceleration-based augmented Lagrangian formulation and the second one on the Baumgarte formulation. We show that these two solvers give the same results and have to satisfy the same criteria to stabilize the algebraic constraint acceleration error. For a modular modeling approach, we propose to use the Baumgarte formulation and an iterative Uzawa algorithm to solve external constraint forces. This work is also the first step to validate the concept of two types of numerical components for object-oriented programming.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.