Abstract

To give an efficiently computable representation of the zeros of a zero-dimensional ideal I, Rouillier (1996) introduced the rational univariate representation (RUR) as an extension of the generalized shape lemma (GSL) proposed by Alonso et al. (1996). In this paper, we propose a new method to compute the RUR of the radical of I, and report on its practical implementation. In the new method, the RUR of the radical of I is computed efficiently by applying modular techniques to solving the systems of linear equations. The performance of the method is examined by practical experiments. We also discuss its theoretical efficiency.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.