Abstract

Abstract. Cavity ring-down spectroscopy (CRDS) has allowed for increasingly widespread, in situ observations of trace gases, including the stable isotopic composition of water vapor. However, gathering observations in harsh environments still poses challenges, particularly in regard to observing the small-scale exchanges taking place between the surface and atmosphere. It is especially important to resolve the vertical structure of these processes. We have designed the ISE-CUBE system as a modular CRDS deployment system for profiling stable water isotopes in the surface layer, specifically the lowermost 2 m above the surface. We tested the system during a 2-week field campaign during February–March 2020 in Ny-Ålesund, Svalbard, Norway, with ambient temperatures down to −30 ∘C. The system functioned suitably throughout the campaign, with field periods exhibiting only a marginal increase in isotopic measurement uncertainty (30 %) as compared to optimal laboratory operation. Over the 2 m profiling range, we have been able to measure and resolve gradients on the temporal and spatial scales needed in an Arctic environment.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.