Abstract
Embedded system designers often face a large number of design alternatives when designing complex systems. A designer must select an alternative which satisfies application constraints (e.g. timing requirements) while optimizing system level objectives such as overall energy consumption. The size of design space is often very large giving rise to the need for systematic Design Space Exploration (DSE) methods. In this paper we address the DSE problem for real-time applications that belong to two different domains: (i) streaming applications modeled using the synchronous dataflow graphs; (ii) feedback control tasks modeled using the periodic task model. We consider a heterogeneous multiprocessor platform in which processors communicate through a predictable bus architecture. We present our DSE tool in which the DSE problem is modeled as a constraint satisfaction problem, and it is solved using a constraint programming solver. This approach provides a modular framework in which different constraints such as deadline, throughput and energy consumption can easily be plugged depending on the system being designed.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.