Abstract
Hydrogen-transfer reduction processes are attracting increasing interest from synthetic chemists in view of their operational simplicity. The new chiral C 2-symmetric ligands N,N′-bis-[(1 S)-1- sec-butyl-2- O-(diphenylphosphinite)ethyl]ethanediamide, 1 and N,N′-bis-[(1 S)-1-phenyl-2- O-(diphenylphosphinite)ethyl]ethanediamide, 2 and the corresponding ruthenium complexes 3 and 4 have been prepared and their structures have been elucidated by a combination of multi-nuclear NMR spectroscopy, IR spectroscopy, and elemental analysis. 1H– 31P NMR, DEPT, 1H– 13C HETCOR, or 1H– 1H COSY correlation experiments were used to confirm the spectral assignments. The catalytic activity of complexes 3 and 4 in transfer hydrogenation of acetophenone derivatives by iso-PrOH has also been studied. Under optimized conditions, these chiral ruthenium complexes serve as catalyst precursors for the asymmetric transfer hydrogenation of acetophenone derivatives in iso-PrOH and act as excellent catalysts, giving the corresponding chiral alcohols in 99% yield and up to 75% ee. This transfer hydrogenation is characterized by low reversibility under these conditions.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.