Abstract
A variety of algorithms have been successful in predicting human leukocyte antigen (HLA)-peptide binding for HLA variants for which plentiful experimental binding data exist. Although predicting binding for only the most common HLA variants may provide sufficient population coverage for vaccine design, successful prediction for as many HLA variants as possible is necessary to understand the immune response in transplantation and immunotherapy. However, the high cost of obtaining peptide binding data limits the acquisition of binding data. Therefore, a prediction algorithm, which applies the binding information from well-studied HLA variants to HLA variants, for which no peptide data exist, is necessary. To this end, a modular concept of class I HLA-peptide binding prediction was developed. Accurate predictions were made for several alleles without using experimental peptide binding data specific to those alleles. We include a comparison of module-based prediction and supertype-based prediction. The modular concept increased the number of predictable alleles from 15 to 75 of HLA-A and 12 to 36 of HLA-B proteins. Under the modular concept, binding data of certain HLA alleles can make prediction possible for numerous additional alleles. We report here a ranking of HLA alleles, which have been identified to be the most informative. Modular peptide binding prediction is freely available to researchers on the web at http://www.peptidecheck.org .
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.