Abstract

AbstractIn this paper we present a novel “modular” approach for (weighted partial) MaxSAT Modulo Theories. The main idea is to combine a lazy SMT solver with a purely-propositional (weighted partial) MaxSAT solver, by making them exchange information iteratively: the former produces an increasing set of theory lemmas which are used by the latter to progressively refine an approximation of the final subset of the soft clauses, which is eventually returned as output.The approach has several practical features. First, it is independent from the theories addressed. Second, it is simple to implement and to update, since both SMT and MaxSAT solvers can be used as blackboxes. Third, it can be interfaced with external MaxSAT and SMT solvers in a plug-and-play manner, so that to benefit for free of tools which are or will be made available.We have implemented our approach on top of the MathSAT5 SMT solver and of a selection of external MaxSAT solvers, and we have evaluated it by means of an extensive empirical test on SMT-LIB benchmarks. The results confirm the validity and potential of this approach.KeywordsTruth AssignmentAutomatic Test Pattern GenerationLinear ArithmeticSoft ClauseMaxSAT AlgorithmThese keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.