Abstract

An algorithm is presented which can be used for the investigation of a large variety of train-track models. These models only have to fulfil the requirements of linearity and periodicity with respect to the track length direction. A steady-state solution is obtained for a vehicle moving on a tangent track with constant velocity. The algorithm itself can be split into three modules: one for the whole train-track system, one for the track, and one for a single rail support. These modules and their interfaces are described in detail. The article demonstrates the applicability of the algorithm by means of four examples. The first example shows the influence of the sleeper elasticity on the sleeper motion. The second one illustrates the effect of an advanced subsoil model on the wheel/rail contact force. Subsequently, as a further example, the compliance frequency-response functions of a ballasted track and a rigid track are compared. The last example deals with the sleeper passing excitation. Here, it is shown that even in the case of resonance, the wheel/rail contact-force fluctuations remain below ten percent of the static value.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.