Abstract

In this paper, we show that averaging of the Vector Recovery Index (VRI) score for a test involving many images is not accurate and leads to bias. We demonstrate that the higher the difference in primitive count between the data files in an experiment, the higher the bias in calculating the VRI. Normalizing VRI scores is proposed to remove the bias and to get VRI scores that precisely reflects the performance based on images under scrutiny. Empirical performance evaluation on three datasets from the arc segmentation contests attached to International Workshops on Graphics Recognition 2005, 2009, and 2011 shows that the proposed normalization score provides accurate and realistic performance results than the unweighted average of VRI scores. The results based on the modified VRI score show that the vectorisation methods have lower performance than was usually thought.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.