Abstract

Starting from a modified Toda spectral problem, a hierarchy of generalized Toda lattice equations with two arbitrary constants is constructed through discrete zero curvature equations. It is shown that the hierarchy possesses a bi-Hamiltonian structure and a hereditary recursion operator, which implies that there exist infinitely many common commuting symmetries and infinitely many common commuting conserved functionals. Two cases of the involved constants present two specific integrable sub-hierarchies, one of which is exactly the Toda lattice hierarchy.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.