Abstract

The controls of most power electronic inverters connected to an electrical power system (EPS) rely on the precise determination of the voltage magnitude, frequency, and phase angle at the point of common coupling. One of the most widely used approaches for measuring these quantities is the phase-locked loop (PLL); however, the precision of this measurement is affected during transients in the EPS and is a function of the type of event and the architecture of the PLL. PLLs based on the second-order generalized integrator (SOGI) are widely used in power converter synchronization, offering an adaptive or fixed-parameter prefilter with low-pass and band-pass characteristics. This article proposes a variant of the SOGI-PLL that offers improved stability and a faster response time. This is accomplished by decoupling the effect of the SOGI’s gains and adding feedback. The modification is carried out in the state space model of the SOGI. Manipulating the attenuation moves the poles of the SOGI to improve the stability. The performance of the proposed PLL is verified and validated under the processor-in-the-loop (PIL) approach.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.