Abstract

The simulated Kalman filter (SKF) is an algorithm for population-based optimization based on the Kalman filter framework. Each agent in SKF is treated as a Kalman filter. To find the global optimum, the SKF employs a Kalman filter mechanism that includes prediction, measurement, and estimate. However, the SKF is limited to operating in the numerical search space only. Numerous techniques and modifications have been made to numerical meta-heuristic algorithms in the literature in order to enable them to operate in a discrete search space. This paper presents modifications to measurement and estimation in SKF to accommodate the discrete search space. The modified algorithm is called Discrete Simulated Kalman Filter Optimizer (DSKFO). Additionally, the DSKFO algorithm incorporates the 2-opt operator to improve the solution in solving the travelling salesman problem (TSP). The DSKFO algorithm was compared against four other combinatorial SKF algorithms and outperformed them all.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.